Friday, April 19, 2019
Data Mining in Chain Hotels Assignment Example | Topics and Well Written Essays - 1750 words
Data Mining in Chain Hotels - Assignment ExampleDatabases can be utilize by several users seeking businesses in this sector. It helps them to overcome challenges of competition and meet the demands of the market.This study seeks to develop a database for hotel chain management operating 20 hotels in 4 countries. The data mining for the store of schooling for each hotel and performs analysis with regard to the addicted hotel. For each hotel the data w arhouse allow store its name, type, address, country, region, postcode, band count, and the name of the manager. The data also include different types of lives like single, double, family, suits, etc. Each room may also incorpo govern certain optional features, such as icebox, kitchenette, or laundry. The system should have got each room described as rooms type, size, number of beds, the maximum number of customers, refrigerator (Boolean), kitchenette (Boolean), laundry (Boolean). The capacity of the hotel chain to accommodate c ustomers is limited. The database should help the management on how to price the hotel rooms in order to cook maximum revenue collection. Looking at the capacity of the hotel over time given in the data warehouse, they can easily come up with the prices. Comparison between the occupancy rate (utilization) and the vacancy rate is considered.The hotel chains capacity to accommodate customers is limited. Each hotel has a set number of rooms. The primary source of revenue is accommodation in hotel rooms. The biggest challenge the company faces is determining how to price the hotel rooms. If they are priced low, the hotels will be constantly booked and therefore customers will be forced to try otherwise hotels in competition with The Grande Chat and if the rooms are priced too high, a lot of rooms will remain empty. The hotel chain management wants to realize profits. The only way is to use the data mining to realize their underlying, interesting patterns and relationships that lie hid den within the analysis (Data mining).
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment